After leaving a couple of the rat trap monitors in place for a few months it soon became apparent that weatherproofing was going to be an issue. In fact, I've learned a lot about how to have electronics outside, how to maximise battery life and how to iterate on a product design.
The major issue was weather-proofing. My original idea was to use repurposed "Eclipse" mint tins. These are about the correct size to hold the PCB and have a handy hinged lid that by eye at least seems to seal quite well. Unfortunately, it soon became apparent that "quite well" is not good enough. Although the LoRat devices are in tunnel-like rat trap boxes, the ends of these are open and the LoRat and it's antenna needs to be near the open end of the tunnel. After a few months of sitting out in the garden, each of the prototypes had become unserviceable and signs of water corrosion were visible on the LoRa module.
Although there is no shortage of "true" ingress-protected enclosures, such as these gasket sealed ABS boxes from Jaycar, these are fairly expensive and would cost as much again as the rest of the parts. Instead, I decided to go with these simple Sistema food storage boxes. These have room for the PCB and for a 9V battery and I've been using a simple rubber gasket to seal the opening required for the antenna and one of these waterproof toggle switches for power. The box is attached with a short length of aluminium angle that is screwed onto the trap. Originally I tried epoxying the food storage box to the aluminium but this was difficult to get good adhesion, even after roughening the surface of the plastic. After lifting up the trap by the box and a few times the trap was set off, I found the plastic box would detach. I'm now using some M3 bolts and washers and these seem to be able to be tightened enough to keep it secure and protect against water. Finally I've been using a small packet of self-indicating silica gel in the box as a "last resort" defence against moisture.
The move to using a 9V battery, however, bought its own challenges. Even with the Arduino Mini in low-power mode and the indicator LED removed, a 9V battery only lasted six weeks. That's starting to get a bit expensive and wasteful. The big problem is the low capacity of a 9V (400-500 mAh) and the fact that the Arduino Mini has a relatively inefficient voltage regulator on the board. This hardly matters for most applications but in this situation where the microprocessor is in low-power mode it becomes quite significant. My solution has been to make an additional small PCB with a separate low-dropout regulator with a very low quinesent current. The MCP1703A has a 2.0 µA quiescent current.
17 August 2020 04:03:13 | CASH03 |
16 August 2020 16:09:28 | CASH02 |
13 August 2020 20:24:31 | CASH03 |
13 August 2020 20:23:51 | CASH03 |
12 August 2020 23:50:14 | CASH03 |
09 August 2020 20:02:17 | CASH03 |